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Scaling properties in the packing of crumpled wires

C. C. Donato, M. A. F. Gomes, and R. E. de Souza
Departamento de Fı´sica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil

~Received 22 September 2002; published 13 February 2003!

Statistical properties of configurations of a metallic wire injected into a transparent planar two-dimensional
cavity for three different injection geometries are investigated with the aid of high-resolution digital imaging
techniques. The observed patterns of folds are studied as a function of the packing fraction of the wire within
the cavity. In particular, we have examined the dependence of the mass of wire within a circle of radiusR, as
well as the dependence of the number of contacts wire-wire with the packing fraction. The distribution function
n(s) of connected loops with internal areas formed as a consequence of the folded structure of the wire, and
the average coordination number for these loops are also examined. Several scaling laws connecting variables
of physical interest are obtained and discussed and a relation of this problem with disordered two-dimensional
foam and random packing of disks is examined.
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I. INTRODUCTION

Dense disordered packing of identical spheres is of b
importance to many branches of industry and science,
theoretical, experimental, and technological investigation
this problem have traditionally attracted much attention o
the centuries@1#. Packing of rigid spheres is important in th
microscopic theory of fluids, glasses, and crystals@2#, as well
as in determining the macroscopic granular structure of p
ders and other porous materials. This type of packing is
rently studied in physics and mathematics from the poin
view of computer simulations@3#, simple and innovative ex
periments@4#, and sophisticated theoretical tools@5#. Three-
dimensional~3D! packings of nonspherical objects, such
ensembles of spheroids@6#, rods @7#, cuboids@8#, crumpled
wires and crumpled surfaces@9#, among others, have als
been studied with many types of algorithms. High
dimensional versions of dense packings of spheres ar
current interest in dual theory and superstring theory, as w
as in problems arising in digital communications@5#.

Two-dimensional packing of hard discs has been co
paratively much less studied, despite its intrinsic theoret
interest and its importance in the structure of monomolec
films @2# and its connection with several different packin
problems in geometry@10#. A number of other 2D packing
problems involving random mixtures of discs@11#, squares
@12#, and regular polygons@13# have also been discussed
the literature.

On the other hand, in spite of the great scientific a
technological importance of phenomena associated w
crumpled structures of microscopic and macroscopic ma
als, our understanding of the geometric and physical beh
ior of these systems is still limited. In the last years, theo
ical and experimental aspects of the condensed ma
physics of crumpled sheets have been a subject of grow
interest in many areas of study, e.g., acoustic emission@14#,
continuous mechanics@15#, growth models@16#, packing
problems @9#, polymer, membrane, and interface phys
@17#, universality @18#, among others. Crumpled structur
with different topologies, as exemplified by a squeezed b
of wire, have been much less studied in the physics lite
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ture. The geometrical, statistical, and physical aspects
crumpled wires in 3D space were examined ten years
from the point of view of experimental work and analog
simulations, and in particular some robust scaling laws a
fractal dimensions associated with these disordered sys
were observed@19#. The geometric aspects observed in t
packing of crumpled wires may be relevant to biologic
applications, as for example, in the study of DNA compa
tion in the chromosomes, as well as in the study of sup
coiled DNA structures in the processes of replication a
recombination@20,21#.

In the present paper, we report the results of an exten
experimental analysis of the packing of 2D crumpled str
tures obtained by irreversible squeezing of macrosco
pieces of copper wires within atwo-dimensionaltransparent
cavity. Irreversibility here means that if the constraints due
the cavity are removed, the crumpled wire does not res
the initial configuration. In this work we use high-resolutio
digital images to study quantitatively some important aspe
of the statistical physics of the packing structure of 2
crumpled wires. These structures areremarkably different
from crumpling processes of sheets in 3D. Some of our c
clusions~mostly related to a single injection geometry! have
been summarized elsewhere@22#. Here we give a more de
tailed exposition, and present some results. In particula
comparison is made between the packing process
crumpled wires and the classical problems of the rand
packing of disks and disordered 2D foam.

The outline of the article is as follows. In Sec. II w
describe the experimental details of the problem, and in S
III we present our experimental results and a discussion
our main findings. Section IV is devoted to a discussion c
cerning some similarities observed in the geometric and
chanical properties of crumpled wires, packing of disks, a
disordered 2D foam. In Sec. V we summarize our ma
conclusions.

II. EXPERIMENTAL DETAILS

The experimental apparatus used in our work to regis
2D configurations of crumpled wires is shown in Fig. 1.
©2003 The American Physical Society10-1
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consists of a transparent cell formed by the superpositio
two disks of Plexiglass with a total height of 1.8 cm,
external radius of 15 cm and a circular cavity with radi
R0510 cm and 0.11 cm of height, which can accommod
configurations of asinglelayer of crumpled wire. The cavity
of the cell was polished and the copper wire used in
experiments~#19AWG! had a diameterz50.10 cm and a
varnished surface, in order to reduce the friction. Cavity a
wire operated in dry regime, free of any lubricant. Four
dial channels were made to provide three different ways
injection of wire into the cell at the anglesu510°, 90°, and
180°, as suggested in Fig. 1. The photographs were ta
with an Olympus C-3040ZOOM digital camera with resol
tion of 204831536 pixels, which was assembled 30 cm ov
the cell. To avoid picture artifacts by light reflections a c
lindrical paper screen was placed around the cell as we
lighting was carefully controlled. Afterwards the digital im
ages were transferred to a personal computer where im
were digitally processed. This stage, in general, consist
five steps. In step 1, lighting corrections are performed. T
is quite worth because the light reflections on the varnis
surface of the wire become the boundary wire image so
what undefined. In step 2, the circular area correspondin
the cavity is removed. In step 3, the length of the wire
computed by counting imaging pixels and the result is co
pared to the length of wire, previously measured. We h
accepted a image as valid data when the percent rela
error is less than or equal to 3%. In step 4, we have c
verted the original RGB image standard into binary ima
The cavity background and wire become white and bla
respectively. In step 5, all subsequent specific processin
compute mass-size relation, box counting for 2D, numbe
loops, perimeter of loops, etc., are implemented. At t
point, it is interesting to discuss briefly some basic and qu
tative aspects of the 2D crumpled structures studied in
paper. First, when a thin flexible wire of lengthL is injected
inside a cavity of the type shown in Fig. 1, the wire bends
its length is slightly larger than the diameter of the cavi

FIG. 1. Diagram of the 2D injection cell used in the experime
discussed in this paper. See Sec. II for details.
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2R0. Second, as more wire is injected, there is a criti
length L5h1 when the wire touches itself forming the firs
loop. If we define the ratioh5h1/2pR0 we then obtainh
50.6860.01; 0.9060.01; and 1.1360.02, for u5180°,
90°, and 10°, respectively. These numerical estimates foh
come from averages on 20 experiments whose intent wa
determine the critical lengthh1. An additional indicator of
the statistical fluctuations ofh is given by the minimum
~maximum! values obtained along the 20 measurements
this quantity:hmin (hmax) assume, respectively, the value
0.67 ~070!, for u5180°, 0.89~0.90!, for u590°, and 1.1
~1.15!, for u510°. Alternately, the first-contact problem in
troduced in this paragraph can be specified by giving
corresponding packing-fractionp defined as

p[~projected area of the crumpled wire/area of the cavit!

5zL/pR0
2 . ~1!

For the first contact,p→pf c[zh1 /pR0
252hz/R050.014

60.001, 0.01860.001, and 0.02360.001, for injection at
180°, 90°, and 10°, respectively.

For increasingp ~or L), the wire begins to crumple pro
gressively into a highly contorted shape as we will sh
next. In order, for the reader, to develop some insight ab
the nature of the crumpling process that is considered h
we show in Fig. 2 typical 2D configurations for some diffe
ent values of the packing fractionp @lengthL ~cm!# 5 0.016
@50# @~a!, ~e!, ~i!#; 0.048@150# @~b!, ~f!, ~j!#; 0.095@300# @~c!,
~g!, ~k!#; and pmax(u)@Lmax(u)(cm)#50.150 @470#, for u
5180° ~d!; 0.125@394#, for u590° ~h!; and 0.130@409#, for
u510° ~l!. Figures 2~a!, 2~e!, and 2~i! indicate the early
stages of the crumpling process as we inject the wire into
2D cavity. Irrespective of the geometry, the experiments
gin fitting a straight wire in the corresponding channels
sociated with a particular geometry and subsequently pu
ing manually and uniformly the wire on both sides of the c
toward the interior of the cavity. The patterns of crumpl
wire observed within the cavity are basically due to the f
mation of a cascade of loops of decreasing size. During
progressive injection of wire into the cavity, the cascade
loops evolves in such a way that it is common to obse
localized or large~global! rearrangements of the loops pr
viously formed, particularly for the caseu5180°. For u
510° and 90°, the global rearrangements are much m
rare. The reader can also observe that the sharp crease
ridges found in crumpling of sheets are absent in the
crumpled wires shown in Fig. 2. Figures 2~i!–2~l! show a
typical sequence of injection at 10°. The sequence st
forming a circlelike configuration that collapses into
double wire structure that contains loops. This new struct
evolves almost as if it were one single cascade of loops, u
the size of loops approach the distance between injec
points in the cell, which is'1.7 cm. At this point, the pat-
tern splits up onto two small cascades. The dynamics
crumpling for 90° injection shown in Fig. 2~h! is quite simi-
lar to that shown in Fig. 2~l! in the sense that two isolate
cascades of small loops are localized near the injec
points. The initial injection velocity of wire at each chann

s
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SCALING PROPERTIES IN THE PACKING OF . . . PHYSICAL REVIEW E 67, 026110 ~2003!
FIG. 2. Typical 2D configurations of crumpled wire for some different values of the packing fractionp @length L~cm!# 5 0.016 @50#
@~a!,~e!,~i!#; 0.048@150# @~b!,~f!,~j!#; 0.095@300# @~c!,~g!,~k!#; and pmax,u@Lmax,u ~cm!# 5 0.150@470#, for u5180° ~d!; 0.125@394#, for u
590° ~h!; and 0.130@409#, for u510° ~l!. See Sec. II and III for details.
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in the experiments was of the order of 1 cm s21. However,
the observed phenomena are widely independent of the
jection speed for all interval of injection velocity compatib
with a manual process. When the length of wire within t
cavity increases (p*0.10), the difficulty of injecting more
wire rises, with a corresponding reduction in the velocity
injection. Forp nearpmax, the difficulty in the injection rises
abruptly and the crumpled structures finally become rig
the crumpled wire becomes completely jammed within
cavity and it is practically impossible to continue with th
injection of wire forp.pmax. Thus, the mechanical behav
ior of the samples is quite different whether we are near
well below pmax. The particular moment when the injectio
velocity goes rapidly to zero leads to atight-packing~TP!
configuration for the crumpled wire, as shown in Figs. 2~d!,
2~h!, and 2~l!. Experimental estimates of the maximumav-
erage~over seven equivalent experiments for each geom
of injection! packing fraction for the three different geom
etries studied givepmax50.1460.01, 0.1160.02, and 0.14
60.02, for 180°, 90°, and 10°, respectively. Our over
estimate points topmax50.1460.02, irrespective of the ge
ometry of injection. To rule out any possibility of the T
configurations being a consequence of friction effects,
carried out experiments where the cavity was filled with m
02611
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eral oil. The results in this case perfectly agree with t
dry-regime ones:pmax50.1460.02, irrespective of geom
etry. We can observe from Fig. 2 that the differences in
geometric patterns of crumpled wires for different injecti
angles are more evident forp&0.05 (L&150 cm). Whenp
increases, these differences attenuate, although the parti
symmetry signatures associated to the three geometrie
injection studied remain evident. It is important to notic
however, that the critical exponents obtained in the followi
sections areindependent~within typical statistical fluctua-
tions of 5 –10 %) on the particular type of injection symm
try considered. A detailed quantitative study of the config
rations of 2D crumpled wires is made in the followin
section.

III. RESULTS AND DISCUSSION

A. Mass-size relation

One of the most basic physical properties when dea
with growth models, polymer configurations, and frac
structures presenting some degree of statistical isotrop
the dependenceM (R) of the mass of the system within
circle of radiusR. This quantity is shown in the log-log plot
0-3



C. C. DONATO, M. A. F. GOMES, AND R. E. de SOUZA PHYSICAL REVIEW E67, 026110 ~2003!
FIG. 3. Mass-size dependence for seven equivalent configurations of crumpled wires in the TP limit for~average! p @L(cm)#50.139
@438#, 0.116@363#, and 0.135@423#; respectively foru5180° ~a!, 90° ~b!, and 10°~c!. The averaged mass in the scaling region~delimited
by dotted lines in the figure! behaves asM (R);RD, with D51.960.2, foru5180°, andD51.860.2, foru590°, and 10°. See Sec. III A
for details.
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of Figs. 3~a!–3~c! in arbitrary units, for TP configurations o
2D crumpled wires associated with 7 equivalent samp
with averagemaximum packing fraction~length! given by
p@L(cm)#50.139@438#, 0.116 @363#, and 0.135@423#; re-
spectively, foru5180°, 90°, and 10°. In the plots of Fig.
we can observe that the mass~or projected area! of the
crumpled structures display a tendency to scale as a po
law in R over two decades, fromR50.1 cm to R5R0
510 cm. From these figures, we obtainM (R);RD, with
D(u5180°)51.960.2, and D(u590°)5D(u510°)51.8
60.2, within the scaling interval delimited by the dotte
lines in Fig. 3. Our overall estimate is

M;RD, D51.960.2, ~2!

in the TP limit for all injection geometry. Of course, the tru
mass-size exponent for the TP configurations in Eq.~2! could
be the Euclidean exponentDE52.

The exponentD in Eq. ~2! can be related to the distribu
tion functionsn(s) or n( l ), giving the respective number o
loops of internal areas or perimeterl, and to the energyE
needed to form a loop of a certain size. To see this, first n
that the work needed to form a TP configuration with
length L of wire injected into the cavity is simplyW
5Fext3L, where Fext is the available~constant! average
external force to perform the packing process. The workW
can also be calculated as

W5E
l min

l max
n~ l !E~ l !dl5E

smin

smax
n~s!E~s!ds,

wheren( l )dl5n(s)ds. If we use the simple scaling hypoth
eses for the TP limit:s; l 2 ~to be confirmed in Sec. III F!,
n(s);s2t ~such a power law is in conformity with the ca
cade of loops mentioned in Sec. II; see also Sec. III E!, and
E(s);sa,a.0; with smin dependent on the length scalez,
andsmax;R2, we obtain

W;M;RD, D52~11a2t!. ~3!

From Eqs.~3! and~2! we conclude thata5t within typical
statistical fluctuations of 10% inD. If we adopt a simple
elastic energy quadratic in the linear size, i.e., withE; l 2

;sa, a51, a distribution function for loops decaying a
02611
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n(s);s21.060.1 is expected. In fact, this scaling distributio
for n(s) is not significantly different from the experimenta
resultn(s);s21.460.2 reported in Ref.@22#, and discussed in
Sec. III E. Before concluding this section, some addition
information on the method used to obtainM (R) in Fig. 3 is
in order. The measurement ofM as a function ofR was made
in two steps: for 4 cm,R,10 cm, M (R) was measured
within a single circle with origin at the geometrical center
the cell; and for 0.1 cm,R,4.0 cm,M (R) was taken as the
average mass within 5 or 6 equivalent disjoint circles who
centers were localized in different points of the wire taken
random but subject to the further constraint of nonover
with the border of the cell. This procedure is important
counterbalance an expected distortion leading to a deple
of the mass near the center of the cell if a single circle
used. The effect due to one-center sampling is illustrated
Fig. 4, which shows the same type of plot as that in Fig. 3~a!,
but with M (R) measured only in circles whose centers co
cide with the center of the cell. In order to give a bett
account of the mass-size dependence in these packing
cesses, we exhibit in Fig. 5 the mass-size relation for w
with p@L(cm)#50.0477@150#, for all types of injection stud-
ied. In these cases we obtain sensibly different effective
ponents, namely, D(u5180°)51.3560.10, and D(u
590°)5D(u510°)51.4560.10. A possible guess regard
ing the nature of the configurations of crumpled wires in o
experiments includes an analogy with the conformations
self-avoiding random walks or linear polymers@23#. Self-

FIG. 4. The same mass-size relation for the crumpled wires a
Fig. 3~a! ~TP limit, u5180°), but using only circles with origin a
the center of the cell: the quality of the scaling relation reduces.
Sec. III A for details.
0-4
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FIG. 5. Mass-size relation for wires withp @L(cm)#50.0477@150#, for all types of injection studied. In these cases we obtain sens
different effective exponents~as compared with those of Fig. 3!: De f f51.3560.10, foru5180° ~a!, andDe f f51.4560.10, foru590° ~b!
and 10°~c!. These values are reminiscent of the Flory exponent 4/3 for self-avoiding random walks in two dimensions. See Sec.
details.
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avoiding random walks properly weights the conformatio
available to a real linear chain polymer@24#. Crumpled wires
and real polymers are expected to be similar in some se
because both systems refer to unbranched flexible chain
matter submitted to elastic and excluded-volume interatio
The Flory analysis for this type of polymer predicts a ma
size exponentD54/3 in two dimensions@23#. This last value
is in close agreement with the numerical results ofDe f f re-
ported in Fig. 5, which is for crumpled wires associated w
packing fractions greater thanpf c (1.4% to 2.3%) and less
thanpmax (13% to 15%).

B. Box counting for 2D crumpled wires

The geometric properties of the crumpled wires were
ditionally studied with the box-counting method@25# by
counting the numberN(e) of squares of sizee needed to
cover the crumpled structures. We exemplify in Fig. 6 t
corresponding log-log plot of the~averaged! N(e) versuse
associated with the structures studied in Fig. 3~a!, that is, for
the TP limit, andu5180°. The plot in Fig. 6 shows tha
N(e) scales ase2D8, whereD8 is the fractal dimension o
the 2D crumpled wire. The exponentD8 has the values 1.8
60.2; i.e., D8 is the same as the mass-size exponenD
within the statistical fluctuations. The mass-size exponenD
is equal to the exponentD8 obtained from the box counting
~within statistical fluctuations of 10%! also for the geom-
etries withu590° and 10°.

C. Number of loops

As the packing fraction of the wire injected into the cav
increases, the total number of loopsnl formed as a conse
02611
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quence of wire-wire contacts also grows. The experimen
dependence ofnl with p ~averaged on seven equivalent e
periments! (j) and the corresponding fluctuations a
shown in Fig. 7. The log-log plot ofnl(p) shows two differ-
ent behaviors: a shoulder forp&0.032 and a power-law
asymptotic dependencenl;p1.660.2, for 0.032&p&0.140.
The rate of loop formation presents the largest value in
beginning of the first region, when the incipient CW behav
as a soft structure. The number of loopsnl is needed to
calculate the average coordination number in the follow
section.

D. Number of contacts wire-wire and number of coordination

Two important statistical quantities are the number
wire-wire contactsnww as a function ofp, as well as the

FIG. 6. Log-log plot of the~average! numberN(e) of boxes of
sizee needed to cover each one of the seven equivalent config
tions of 2D crumpled wire associated to Fig. 3~a! ~TP limit, u
5180°) as a function ofe. The scaling exponentD851.860.2 in

N(e);e2D8 agrees with the mass-size exponentD of Fig. 3~a!. See
Sec. III B for details.
0-5
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averaged number of different loops which are in contact w
a single loop or, simply, the average coordination numberg;
both are particular cases of the kissing number problem@5#.
In Fig. 8 we exhibitnww , as a function ofp; nww is greater
than the number of contacts loop-loopnll presented in Ref.
@22#, because now we need to add tonll the number of con-
tacts to form all the loops~5@1 contact per loop#3@nl
loops#5nl contacts! and the number of contacts of a loo
with a nonloop. As shown in Fig. 8,nww scales asnww
;p2.060.1 along one decade, with small statistical fluctu
tions. This experimental result is reminiscent of Flory’s me
field argument, which suggests thatnww should scale with
the density of repulsive energy within a particular configu
tion of crumpled wire, that is withp2 @23#. The average
coordination or kissing numberg5nll /nl , is an important
statistical parameter in disordered packings: in our exp
ment, g increases asymptotically asg;p0.760.2. This last
exponent must be considered with a grain of salt because
deduced using the short interval 0.045&p&0.140, as shown
in the inset of Fig. 8. It can be noticed from this inset th
g'1.5 at the TP limit; this value is less than half the me

FIG. 7. The dependence of the number of loopsnl with the
packing fractionp, averaged on seven equivalent experiments (j),
and the corresponding fluctuations.

FIG. 8. The average total number of contacts wire-wirenww

scales asnww;p2.060.1 along one decade. The inset shows the
erage coordination or kissing numberg, which increases asymptoti
cally asg;p0.760.2, in the interval 0.045&p&0.140. See Sec. III D
for details.
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contact coordination found in many 2D packing of discs w
size distribution studied by Bideau and Troadec@11#. More-
over, the valueg'1.5 for crumpled wire in the TP limit is
very close to the number of coordination found in some
disordered packings, namely, the face-to-face coordina
number for regular polygons of 9 faces (g f f

9 51.34), and the
vertex-to-face coordination number for packing of regu
triangles (gv f

3 51.73) @13#.

E. Distribution function for areas of loops

We observe that the TP limit in our experiment is asso
ated with 2D configurations of crumpled wires with a tot
number of loops varying in the intervalnl522 to nl545,
with an averagê nl&'35.5. In all we had 249 loops fo
seven equivalent experiments of crumpled wires with
largest packing fractions. If these loops are divided in b
according their respective areass, we obtain the distribution
functionn(s) which is shown in Fig. 9. The linear fit in this
figure gives an asymptotic power-law behavior over abou
decade:n(s);s2t, with t51.460.2. The expected value
for the exponentt is t5(D1d21)/d51.4560.10, in good
agreement with the experimental data@22#. A cascade of
loops satisfying a scaling distribution of sizes seems to o
mize the occupation of space by a flexible wire. For man
loop structures distant from the TP limit, the total number
loops is smaller, andn(s) does not scale as a power law.

F. Perimeter-area relation for loops

For 2D Euclidean figures of any shape we know that
relation between perimeterP and area delimited by the pe
rimeter,s, obeys the scalingP5k s1/2, with k dependent on
the particular shape of the figure. In order to quantify t
geometry of the loops in our experiment, we evaluate b
perimeter and area for each loop within the range
,s(mm2),2000 in seven equivalent experiments in the
limit. This interval ofs assures the 2D character of the pac
ing: the smallest loops in this interval have a typical leng

-

FIG. 9. Distribution functionn(s) for loops with areas in the
TP limit. The straight line represents the adjustn(s);s21.460.2. See
Sec. III E for details.
0-6
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SCALING PROPERTIES IN THE PACKING OF . . . PHYSICAL REVIEW E 67, 026110 ~2003!
considerably larger than the height of the cavity. The dep
dence between these two variables is exhibited in the log
plot of Fig. 10 along two decades of variability ins. Figure
10 indicates that the shape of the loops is a statistically
variant property of the loops at least in the two-decade in
val of area considered. The continuous line in this figu
represents the best fitP5(5.862.1)s0.4960.07 for u5180°,
whereP ands are given in mm and mm2, respectively. It is
interesting to notice that the valuek55.38 is significantly
greater thank52p1/2>3.544 . . . for circles, and signifi-
cantly greater than the largest value observed for reg
polygons: k52333/4>4.559 . . . , for equilateral triangles.
For u590° and 10° we obtain, respectively,P55.14s0.50

andP54.93s0.50.

IV. CRUMPLED WIRE, DISORDERED FOAM,
AND PACKING OF DISKS

As we have commented in the end of Sec. II, the m
chanical behavior of the samples of crumpled wires is qu
different near and well below the maximum packing fracti
pmax. For p!pmax, the structures of wire examined in th
work are soft, and it is relatively easy to introduce wire in
the cavity; for p&pmax, the rigidity increases rapidly an
the difficulty to insert more wire increases in the same w
Based on our experimental results, we estimate that fop
5pmax50.1460.02, for any of the three modes of injectio
examined, the crumpled structure is so rigid, that the w
becomes completely jammed within the cavity, being nea
impossible to continue its injection.

The crumpled wires we are dealing with and disorde
2D foam have a formal similarity in the sense that both
disordered 2D cellular structures composed of two differ
phases: a condensed-phase~metal in the crumpled wire case
and liquid in the foam case!, and a less-condensed pha
~basically air in both cases!. In crumpled wires the mass i
concentrated on the wires, while in froth the mass of liquid
concentrated in Plateau borders and borders junction@26#.

FIG. 10. Perimeter (P)-area ~s! relation for loops in the TP
limit. The continuous line in this figure represents the best
P(mm)5(5.862.1)s0.4960.07 along two decades ins, for u
5180°. See Sec. III F for details.
02611
n-
g

-
r-
e

ar

-
e

.

e
y

d
e
t

s

Computer simulation shows that 2D disordered soap fo
undergoes a transitionrigid → soft when the condensed
phase~liquid! reaches a packing fractionpcp50.16 from be-
low or, equivalently, when the packing fraction of the les
condensed-phase~air! reaches the value 120.1650.84 from
above@27#. If p.0.16, the shear modulus of the foam go
to zero, because the Plateau borders formed by liquid pe
late and the system is now formed by isolated~circular!
bubbles. Boltom and Weaire@27# argued that this valuepcp
is associated with the problem of random close packing
disks in 2D. In fact, Bideau and Troadec have shown t
there is a wide range of random mixtures of hard disks~i.e.,
the condensed phase in the packing of disks! for which the
packing fraction is 0.8460.01, independently of the relativ
concentration and size of the disks@11#. In 2D foam, the
limit pcp50.16 for the condensed phase is complementar
0.84 obtained for disks. We conjecture that 2D crump
wires undergo forany mode of injection of the wire in the
cavity, i.e., not only for the three modes of injection studi
in this work, a transitionsoft → rigid when the packing
fraction p associated with the wire approachespmax50.14
60.02. This concentration is equal topcp for foams within
the statistical fluctuations, and complementary to 0
60.01 for random mixtures of hard disks. Thus, ifp,0.14
60.02, we can always introduce wire in the cell witho
much difficulty, but as long as the solid fractionp approaches
the critical limit 0.1460.02, the crumpled wire rapidly
reaches a jammed~rigid! state. Our experiments suggest th
this critical limit is robust, and validirrespectiveof the mode
of injection of wire, and the state of lubrication or dryness
the cavity. Forp.pmax, further injection of wire is impos-
sible for all practical purposes. The conjectured relations
among 2D crumpled wire, 2D disordered soap foam, and
random packing of disks is summarized in Fig. 11:~i! Ran-
dom packing of disks with size distribution~top horizontal
line! can attain a maximum packing fraction of 0.8460.01;
~ii ! disordered soap foam~intermediate line! can be observed
with packing fraction of the liquid phase~p! in the entire
interval 0<p<1. However, foam undergoes a transitio
from a rigid phase to a soft phase, whenp crosses the value
0.16 from below, and undergoes a transition from a s

t

FIG. 11. Schematic representation of the soft and rigid doma
observed in the three classes of disordered 2D structures discu
in Sec. IV: ~a! crumpled wire (p.0.1460.02 is inaccessible!, ~b!
soap foam, and~c! packing of disks (p.0.8460.01 is inacces-
sible!.
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phase to a rigid phase, when the same line is crossed in
reverse direction. In particular,p50 means a perfectly dry
foam, whereasp51 represents the uniform liquid state.~iii !
Crumpled wire can attain~obviously only from below, as
hard disks! a maximum packing fraction of 0.1460.02, irre-
spective of the mode of injection and the state of lubricat
of the cavity.

V. SUMMARY AND CONCLUSION

We have studied experimentally in detail the geometry
packings of crumpled wires in a two-dimensional cavity an
in particular, the dependence of several statistical prope
of such structures with the packing fractionp of the wire.
Many scaling laws connecting variables of interest are
ported in Sec. III, and the associated critical exponents
found to be independent of the form of injection of the w
in the cavity. It is shown that there aresoftandrigid domains
of behavior for crumpled wires, dependent upon the pack
.
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fraction. We conjecture that crumpled wires in 2D attain
rigid state, as observed for random packing of disks a
disordered 2D soap foam@27#, when the packing density o
wire approaches the value 0.1460.02, irrespective of the
mode of injection and the state of lubrication of the cavi
This surprisingly low packing fraction is complementary
that observed in the 2D disordered packing of disks wit
the statistical fluctuations.
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